113 research outputs found

    Business Plan of Marketing Agency

    Get PDF
    Import 02/11/2016Bakalářská práce na téma Podnikatelský záměr marketingové agentury je členěna do dvou částí. První část této práce se zabývá teorií tvorby podnikatelského záměru a také jsou zde popsány právní formy podnikání. Druhá část bakalářské práce se zabývá tvorbou samotného podnikatelského záměru marketingové agentury včetně finančního plánu.Bachelor thesis on the topic of Business Plan of Marketing Agency has two parts. The first theoretical part of bachelor thesis focuses on formation of the business plan in general. There is also described juristic forms of the business itself. The second part presents a concrete business plan of the marketing agency including also the financial plan.152 - Katedra podnikohospodářskávýborn

    Molecules, morphometrics and new fossils provide an integrated view of the evolutionary history of Rhinopomatidae (Mammalia: Chiroptera)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Rhinopomatidae, traditionally considered to be one of the most ancient chiropteran clades, remains one of the least known groups of Rhinolophoidea. No relevant fossil record is available for this family. Whereas there have been extensive radiations in related families Rhinolophidae and Hipposideridae, there are only a few species in the Rhinopomatidae and their phylogenetic relationship and status are not fully understood.</p> <p>Results</p> <p>Here we present (a) a phylogenetic analysis based on a partial cytochrome <it>b </it>sequence, (b) new fossils from the Upper Miocene site Elaiochoria 2 (Chalkidiki, Greece), which represents the first appearance datum of the family based on the fossil record, and (c) discussion of the phylogeographic patterns in both molecular and morphological traits. We found deep divergences in the <it>Rhinopoma hardwickii </it>lineage, suggesting that the allopatric populations in (i) Iran and (ii) North Africa and the Middle East should have separate species status. The latter species (<it>R. cystops</it>) exhibits a shallow pattern of isolation by distance (separating the Middle East and the African populations) that contrasts with the pattern of geographic variation in the morphometrical traits. A deep genetic gap was also found in <it>Rhinopoma muscatellum </it>(Iran vs. Yemen). We found only minute genetic distance between <it>R. microphyllum </it>from the Levant and India, which fails to support the sub/species distinctness of the Indian form (<it>R. microphyllum kinneari</it>).</p> <p>Conclusion</p> <p>The mtDNA survey provided phylogenetic tree of the family Rhinopomatidae for the first time and revealed an unexpected diversification of the group both within <it>R. hardwickii </it>and <it>R. muscatellum </it>morphospecies. The paleobiogeographic scenario compiled in respect to molecular clock data suggests that the family originated in the region south of the Eocene Western Tethyan seaway or in India, and extended its range during the Early Miocene. The fossil record suggests a Miocene spread into the Mediterranean region, followed by a post-Miocene retreat. Morphological analysis compared with genetic data indicates considerable phenotypic plasticity in this group.</p

    Remnants of an ancient deltaretrovirus in the genomes of horseshoe aats (Rhinolophidae)

    Get PDF
    Endogenous retrovirus (ERV) sequences provide a rich source of information about the long-term interactions between retroviruses and their hosts. However, most ERVs are derived from a subset of retrovirus groups, while ERVs derived from certain other groups remain extremely rare. In particular, only a single ERV sequence has been identified that shows evidence of being related to an ancient , despite the large number of vertebrate genome sequences now available. In this report, we identify a second example of an ERV sequence putatively derived from a past deltaretroviral infection, in the genomes of several species of horseshoe bats (Rhinolophidae). This sequence represents a fragment of viral genome derived from a single integration. The time of the integration was estimated to be 11-19 million years ago. This finding, together with the previously identified endogenous in long-fingered bats (Miniopteridae), suggest a close association of bats with ancient deltaretroviruses

    Wolf outside, dog inside? The genomic make-up of the Czechoslovakian Wolfdog

    Get PDF
    Background Genomic methods can provide extraordinary tools to explore the genetic background of wild species and domestic breeds, optimize breeding practices, monitor and limit the spread of recessive diseases, and discourage illegal crossings. In this study we analysed a panel of 170k Single Nucleotide Polymorphisms with a combination of multivariate, Bayesian and outlier gene approaches to examine the genome-wide diversity and inbreeding levels in a recent wolf x dog cross-breed, the Czechoslovakian Wolfdog, which is becoming increasingly popular across Europe. Results Pairwise FST values, multivariate and assignment procedures indicated that the Czechoslovakian Wolfdog was significantly differentiated from all the other analysed breeds and also well-distinguished from both parental populations (Carpathian wolves and German Shepherds). Coherently with the low number of founders involved in the breed selection, the individual inbreeding levels calculated from homozygosity regions were relatively high and comparable with those derived from the pedigree data. In contrast, the coefficient of relatedness between individuals estimated from the pedigrees often underestimated the identity-by-descent scores determined using genetic profiles. The timing of the admixture and the effective population size trends estimated from the LD patterns reflected the documented history of the breed. Ancestry reconstruction methods identified more than 300 genes with excess of wolf ancestry compared to random expectations, mainly related to key morphological features, and more than 2000 genes with excess of dog ancestry, playing important roles in lipid metabolism, in the regulation of circadian rhythms, in learning and memory processes, and in sociability, such as the COMT gene, which has been described as a candidate gene for the latter trait in dogs. Conclusions In this study we successfully applied genome-wide procedures to reconstruct the history of the Czechoslovakian Wolfdog, assess individual wolf ancestry proportions and, thanks to the availability of a well-annotated reference genome, identify possible candidate genes for wolf-like and dog-like phenotypic traits typical of this breed, including commonly inherited disorders. Moreover, through the identification of ancestry-informative markers, these genomic approaches could provide tools for forensic applications to unmask illegal crossings with wolves and uncontrolled trades of recent and undeclared wolfdog hybrids

    Decadal shift in foraging strategy of a migratory southern ocean predator

    Get PDF
    Rapid anthropogenic environmental change is expected to impact a host of ecological parameters in Southern Ocean ecosystems. Of critical concern are the consequences of these changes on the range of species that show fidelity to migratory destinations, as philopatry is hypothesized to help or hinder adaptation to climate change depending on the circumstances. Many baleen whales show philopatry to feeding grounds and are also capital breeders that meet migratory and reproductive costs through seasonal energy intake. Southern right whales (Eubalaena australis, SRWs) are capital breeders that have a strong relationship between reproductive output and foraging success. The population dynamics of South Africa's population of SRWs are characterized by two distinct periods: the 1990s, a period of high calving rates; and the late 2010s, a period associated with lowered calving rates. Here we use analyses of stable carbon (δ13C) and nitrogen (δ15N) isotope values from SRW biopsy samples (n = 122) collected during these two distinct periods to investigate foraging ecology of the South African population of SRWs over a time period coincident with the demographic shift. We show that South African SRWs underwent a dramatic northward shift, and diversification, in foraging strategy from 1990s to 2010s. Bayesian mixing model results suggest that during the 1990s, South African SRWs foraged on prey isotopically similar to South Georgia/Islas Georgias del Sur krill. In contrast, in the 2010s, South African SRWs foraged on prey isotopically consistent with the waters of the Subtropical Convergence, Polar Front and Marion Island. We hypothesize that this shift represents a response to changes in preferred habitat or prey, for example, the decrease in abundance and southward range contraction of Antarctic krill. By linking reproductive decline to changing foraging strategies for the first time in SRWs, we show that altering foraging strategies may not be sufficient to adapt to a changing ocean

    Population changes in a whale breeding ground revealed by citizen science noninvasive genetics

    Get PDF
    Historical exploitation, and a combination of current anthropogenic impacts, such as climate change and habitat degradation, impact the population dynamics of marine mammalian megafauna. Right whales (Eubalaena spp.) are large cetaceans recovering from hunting, whose reproductive and population growth rate appear to be impacted by climate change. We apply noninvasive genetic methods to monitor southern right whale (E. australis, SRW) and test the application of noninvasive genetics to minimise the observer effects on the population. Our aim is to describe population structure, and interdecadal and interannual changes to assess species status in the Great Acceleration period of Anthropocene. As a basis for population genetic analyses, we collected samples from sloughed skin during post-migration epidermal moult. Considering the exploration-exploitation dilemma, we collaborated with whale watching companies, as part of a citizen science approach and to reduce ad hoc logistic operations and biopsy equipment. We used mitochondrial and microsatellite data and population genetic tools. We report for the first time the genetic composition and differentiation of the Namibian portion of the range. Population genetic parameters suggest that South Africa hosts the largest population. This corresponds with higher estimates of current gene flow from Africa compared to older samples. We have observed considerable interannual variation in population density at the breeding ground and an interdecadal shift in genetic variability, evidenced by an increase in the point estimate inbreeding. Clustering analyses confirmed differentiation between the Atlantic and Indo-Pacific, presumably originating during the ice ages. We show that population monitoring of large whales, essential for their conservation management, is feasible using noninvasive sampling within non-scientific platforms. Observed patterns are concurrent to changes of movement ecology and decline in reproductive success of the South African population, probably reflecting a large-scale restructuring of pelagic marine food webs.Charles University Grant Agency, Czech Republic.https://www.elsevier.com/locate/geccoam2023Mammal Research InstituteZoology and Entomolog

    Genetic diversity and connectivity of southern right whales (Eubalaena australis) found in the Brazil and Chile-Peru wintering grounds and the South Georgia (Islas Georgias del Sur) feeding ground

    Get PDF
    As species recover from exploitation, continued assessments of connectivity and population structure are warranted to provide information for conservation and management. This is particularly true in species with high dispersal capacity, such as migratory whales, where patterns of connectivity could change rapidly. Here we build on a previous long-term, large-scale collaboration on southern right whales (Eubalaena australis) to combine new (nnew) and published (npub) mitochondrial (mtDNA) and microsatellite genetic data from all major wintering grounds and, uniquely, the South Georgia (Islas Georgias del Sur: SG) feeding grounds. Specifically, we include data from Argentina (npub mtDNA/microsatellite=208/46), Brazil (nnew mtDNA/microsatellite=50/50), South Africa (nnew mtDNA/microsatellite=66/77, npub mtDNA/microsatellite=350/47), Chile-Peru (nnew mtDNA/microsatellite=1/1), the Indo-Pacific (npub mtDNA/microsatellite=769/126), and SG (npub mtDNA/microsatellite=8/0, nnew mtDNA/microsatellite=3/11) to investigate the position of previously unstudied habitats in the migratory network: Brazil, SG and Chile-Peru. These new genetic data show connectivity between Brazil and Argentina, exemplified by weak genetic differentiation and the movement of one genetically identified individual between the South American grounds. The single sample from Chile-Peru had a mtDNA haplotype previously only observed in the Indo-Pacific and had a nuclear genotype that appeared admixed between the Indo-Pacific and South Atlantic, based on genetic clustering and assignment algorithms. The SG samples were clearly South Atlantic, and were more similar to the South American than the South African wintering grounds. This study highlights how international collaborations are critical to provide context for emerging or recovering regions, like the SG feeding ground, as well as those that remain critically endangered, such as Chile-Peru

    The extinct Sicilian wolf shows a complex history of isolation and admixture with ancient dogs

    Get PDF
    The Sicilian wolf remained isolated in Sicily from the end of the Pleistocene until its extermination in the 1930s–1960s. Given its long-term isolation on the island and distinctive morphology, the genetic origin of the Sicilian wolf remains debated. We sequenced four nuclear genomes and five mitogenomes from the seven existing museum specimens to investigate the Sicilian wolf ancestry, relationships with extant and extinct wolves and dogs, and diversity. Our results show that the Sicilian wolf is most closely related to the Italian wolf but carries ancestry from a lineage related to European Eneolithic and Bronze Age dogs. The average nucleotide diversity of the Sicilian wolf was half of the Italian wolf, with 37–50% of its genome contained in runs of homozygosity. Overall, we show that, by the time it went extinct, the Sicilian wolf had high inbreeding and low-genetic diversity, consistent with a population in an insular environmen

    Article The extinct Sicilian wolf shows a complex history of isolation and admixture with ancient dogs

    Get PDF
    The Sicilian wolf remained isolated in Sicily from the end of the Pleistocene until its extermination in the 1930s-1960s. Given its long-term isolation on the island and distinctive morphology, the genetic origin of the Sicilian wolf remains debated. We sequenced four nuclear genomes and five mitogenomes from the seven existing museum specimens to investigate the Sicilian wolf ancestry, rela-tionships with extant and extinct wolves and dogs, and diversity. Our results show that the Sicilian wolf is most closely related to the Italian wolf but carries ancestry from a lineage related to European Eneolithic and Bronze Age dogs. The average nucleotide diversity of the Sicilian wolf was half of the Italian wolf, with 37-50% of its genome contained in runs of homozygosity. Overall, we show that, by the time it went extinct, the Sicilian wolf had high inbreeding and low-genetic diversity, consistent with a population in an insular environment

    Unravelling the Scientific Debate on How to Address Wolf-Dog Hybridization in Europe

    Get PDF
    Anthropogenic hybridization is widely perceived as a threat to the conservation of biodiversity. Nevertheless, to date, relevant policy and management interventions are unresolved and highly convoluted. While this is due to the inherent complexity of the issue, we hereby hypothesize that a lack of agreement concerning management goals and approaches, within the scientific community, may explain the lack of social awareness on this phenomenon, and the absence of effective pressure on decision-makers. By focusing on wolf x dog hybridization in Europe, we hereby (a) assess the state of the art of issues on wolf x dog hybridization within the scientific community, (b) assess the conceptual bases for different viewpoints, and (c) provide a conceptual framework aiming at reducing the disagreements. We adopted the Delphi technique, involving a three-round iterative survey addressed to a selected sample of experts who published at Web of Science listed journals, in the last 10 years on wolf x dog hybridization and related topics. Consensus was reached that admixed individuals should always be defined according to their genetic profile, and that a reference threshold for admixture (i.e., q-value in assignment tests) should be formally adopted for their identification. To mitigate hybridization, experts agreed on adopting preventive, proactive and, when concerning small and recovering wolf populations, reactive interventions. Overall, experts' consensus waned as the issues addressed became increasingly practical, including the adoption of lethal removal. We suggest three non-mutually exclusive explanations for this trend: (i) value-laden viewpoints increasingly emerge when addressing practical issues, and are particularly diverging between experts with different disciplinary backgrounds (e.g., ecologists, geneticists); (ii) some experts prefer avoiding the risk of potentially giving carte blanche to wolf opponents to (illegally) remove wolves, based on the wolf x dog hybridization issue; (iii) room for subjective interpretation and opinions result from the paucity of data on the effectiveness of different management interventions. These results have management implications and reveal gaps in the knowledge on a wide spectrum of issues related not only to the management of anthropogenic hybridization, but also to the role of ethical values and real-world management concerns in the scientific debate
    corecore